1.单选题- (共10题)
3.
如图所示,在长方体ABCD﹣A1B1C1D1,若AB=BC,E,F分别是AB1,BC1的中点,则下列结论中不成立的是( )


A.EF与BB1垂直 | B.EF⊥平面BDD1B1 |
C.EF与C1D所成的角为45° | D.EF∥平面A1B1C1D1 |
7.
已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆
上的任意一动点,则
的最小值为( )


A.![]() | B.![]() | C.3 | D.6 |
10.
过直线2x+y+4=0和圆x2+y2+2x﹣4y+1=0的交点,且面积最小的圆方程为( )
A.(x+![]() ![]() ![]() | B.(x﹣![]() ![]() ![]() |
C.(x﹣![]() ![]() ![]() | D.(x+![]() ![]() ![]() |
2.填空题- (共3题)
3.解答题- (共6题)
14.
AB是圆O的直径,点C是圆O上异于A、B的动点,过动点C的直线VC垂直于圆O所在平面,D,E分别是VA,VC的中点.
(1)判断直线DE与平面VBC的位置关系,并说明理由;
(2)当△VAB为边长为
的正三角形时,求四面体V﹣DEB的体积.
(1)判断直线DE与平面VBC的位置关系,并说明理由;
(2)当△VAB为边长为

15.
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PE与平面PBC所成角的正弦值.
(3)在PC上是否存在一点Q,使得平面QAD与平面PBC所成锐二面角的大小为
.



(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PE与平面PBC所成角的正弦值.
(3)在PC上是否存在一点Q,使得平面QAD与平面PBC所成锐二面角的大小为

16.
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求证:AB⊥DE;
(2)若点F为BE的中点,求直线AF与平面ADE所成角的正弦值.

(1)求证:AB⊥DE;
(2)若点F为BE的中点,求直线AF与平面ADE所成角的正弦值.
18.
如图,圆
,
是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E

(1)求曲线E的方程;
(2)过点D(0,3)作直线m与曲线E交于A,B两点,点C满足
(O为原点),求四边形OACB面积的最大值,并求此时直线m的方程;
(3)已知抛物线
上,是否存在直线与曲线E交于G,H,使得G,H的中点F落在直线y=2x上,并且与抛物线相切,若直线存在,求出直线的方程,若不存在,说明理由.



(1)求曲线E的方程;
(2)过点D(0,3)作直线m与曲线E交于A,B两点,点C满足

(3)已知抛物线

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19