- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- + 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a (cm) .若图2的“小狐狸"图案中的阴影部分面积为3cm2,那么a=______cm.

一个大正方形和四个全等的小正方形按图①、②两种方式摆放,设小正方形的边长为x,请仔细观察图形回答下列问题.
(1)用含a、b的代数式表示x,则x=____.
(2)用含a、b的代数式表示大正方形的边长____.(请将结果化为最简)
(3)利用前两问的结论求出图②的大正方形中未被小正方形覆盖部分的面积.(用a、b的代数式表示)
(1)用含a、b的代数式表示x,则x=____.
(2)用含a、b的代数式表示大正方形的边长____.(请将结果化为最简)
(3)利用前两问的结论求出图②的大正方形中未被小正方形覆盖部分的面积.(用a、b的代数式表示)

为庆祝祖国70华诞,某小区计划在一块面积为196m2的正方形空地上建一个面积为100m2的长方形花坛(长方形的边与正方形空地的边平行),要求长方形的长是宽的2倍.请你通过计算说明该小区能否实现这个愿望?
如图,四边形ABCD与四边形EFGH均为正方形,且点E、F在对角线AC上,点G、H分别在边CD、AD上,若AB=6cm,则正方形EFGH的面积为 .

如图
,分别沿长方形纸片
和正方形纸片
的对角线
,
剪开,拼成如图
所示的四边形
,若中间空白部分四边形恰好是正方形
,且四边形
的面积为
,则正方形的面积是( )












A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()


A.![]() | B.5 | C.3 | D.![]() |