- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,则AE的长为( )


A.2或3 | B.![]() ![]() | C.![]() ![]() | D.3或4 |
如图,长方形纸片ABCD的边长AB=
,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是( )



A.120° | B.110° | C.115° | D.105° |
如图,在矩形ABCD中,已知
,
,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则EF的长为







A.2 | B.3 | C.4 | D.5 |
如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为_____.

矩形ABCD中,AB=3,AD=6,点E是边AD上的一个动点,把△BAE沿BE折叠,若点A的对应点A′恰落在矩形ABCD的对称轴上,则AE=_____.
如图,矩形ABCD中,∠ADB=23°,E是AD上一点.将矩形沿CE折叠,点D的对应点F恰好落在BC上,CE交BD于H,连接HF,则∠BHF=__.

如图,将一张长方形纸片沿对角线AC折叠后,点D落在点E处,与BC交于点F,图中全等三角形(包含△ADC)对数有( )


A.1对 | B.2对 | C.3对 | D.4对 |