- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形纸片ABCD中,
,
,点E是AB的中点,点F是AD边上的一个动点,将
沿EF所在直线翻折,得到
,则
的长的最小值是










A.![]() | B.3 | C.![]() | D.![]() |
如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处.
(1)如图1,若折痕
,且
,求矩形ABCD的周长;
(2)如图2,在AD边上截取DG=CF,连接GE,BD,相交于点H,求证:BD⊥GE.
(1)如图1,若折痕


(2)如图2,在AD边上截取DG=CF,连接GE,BD,相交于点H,求证:BD⊥GE.

如图一块矩形的纸片CD=2cm,如果沿图中的EC对折,B点刚好落在AD上,此时∠BCE=15°,则BC的长为( )cm.


A.4 | B.-![]() | C.![]() | D.![]() |
如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点且MN与折痕PQ交于F,连接AC′,BC′,则图中共有等腰三角形的个数是( )


A.1 | B.2 | C.3 | D.4 |
为了庆祝建校八十周年,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD;②将纸片沿着直线AE折叠,使点D恰好落在BC边上的F处……请你根据①②步骤解答下列问题.

(1)找出图中的∠FEC的余角;
(2)计算EC的长.

(1)找出图中的∠FEC的余角;
(2)计算EC的长.