- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点
处,若
,
,则点C的坐标为______ .




在数学拓展课上,小林发现折叠长方形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上.若AD=6,AB=
则∠HAF=___ ,GE=___ .


如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD的内部,将AF延长后交边BC于点G,且
,则
的值为__________ .



如图,四边形ABCD为矩形,点E在AB上,点F在CD上,以EF为折痕,将此矩形折叠,使点A和点C重合,点D和点G重合.
(1)求证:四边形AECF是菱形.
(2)若AB=5,AD=3,则菱形AECF的面积等于_____.
(1)求证:四边形AECF是菱形.
(2)若AB=5,AD=3,则菱形AECF的面积等于_____.

如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°,则下列结论中①∠C′EF=32°;②∠AEC=116°;③∠BGE=64°;④∠BFD=116°,正确的有________ .

如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为_____ .

将两张宽度相等的矩形叠放在一起得到如图所示的四边形ABCD,则四边形ABCD是___________ 形,若两张矩形纸片的长都是10,宽都是4,那么四边形ABCD周长的最大值=___________ .

如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,E D′的延长线与BC相交于点G,若∠EFG=50°,求∠1的度数
