- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- + 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图矩形纸片ABCD中,
,
,P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别是E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是______.



如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?

如图,矩形ABCD中,P为AD上一点,将△ABP沿BP翻折至△EBP,点A与点E重合;
(1)如图1,若AB=10,BC=6,点E落在CD边上,求AP的长;
(2)如图2,若AB=8,BC=6, PE与CD相交于点O,且OE=OD,求AP的长;
(3)如图3,若AB=4,BC=6,点P是AD的中点,求DE的长.
(1)如图1,若AB=10,BC=6,点E落在CD边上,求AP的长;
(2)如图2,若AB=8,BC=6, PE与CD相交于点O,且OE=OD,求AP的长;
(3)如图3,若AB=4,BC=6,点P是AD的中点,求DE的长.

如图,矩形纸片ABCD中,AD= 1,AB一2.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点仪当触ED的外接圆与BC相切于BC的中点N.则折痕FG的长为________

已知:如图,矩形ABCD的两条对角线AC,BD所夹的锐角为60度,较短的边长AB=12cm求证:(1)△ABO等边三角形; (2)求矩形对角线的长. 
