- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 与三角形中位线有关的求解问题
- 三角形中位线与三角形面积问题
- + 与三角形中位线有关的证明
- 三角形中位线的实际应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,则S1=_______,S2017=____________.

如图,在△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,∠B=34°.
(1)求∠BAD的度数;
(2)求证:AE=DE.
(1)求∠BAD的度数;
(2)求证:AE=DE.

如图,在
中,
,点
在
上,
,过点
作
,垂足为
,
经过
,
,
三点.

Ⅰ 求证:
是
的直径;
Ⅱ 判断
与
的位置关系,并加以证明;
Ⅲ 若
的半径为
,
,则
= .(只填结果)













Ⅰ 求证:


Ⅱ 判断


Ⅲ 若




如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为
的中点,BE⊥CD垂足为E.

(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=
,求OE的长度.


(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=

在Rt△ABC中,BC=2,AC=4,点D为AB的中点,P为AC边上一动点.△BDP沿着PD所在的直线翻折,点B的对应点为

A. (1)若PD⊥AB,求AP. (2)当AD=PE时,求证:四边形BDEP为菱形. (3)若△PDE与△ABC重合部分的面积等于△PAB面积的 ![]() |

如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )


A.4 | B.5 | C.![]() | D.6 |
如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.

已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,
(1)求证MF=NF
(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)
(1)求证MF=NF
(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)
