- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- + 三角形中位线
- 与三角形中位线有关的求解问题
- 三角形中位线与三角形面积问题
- 与三角形中位线有关的证明
- 三角形中位线的实际应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为( )


A.60° | B.65° | C.70° | D.75° |
如图,已知
周长为1,连接
三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是__________.



如图,在矩形ABCD中,点E为AD的中点,不用圆规、量角器等工具,只用无刻度的直尺作图.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.

如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.

如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′

A.当△A′EF为直角三角形时,AB的长为_____. |

我们知道,勾股定理反映了直角三角形三条边的关系: a2+b2=c2,而a2, b2, c2又可以看成是以a,b, c为边长的正方形的面积.如图,在Rt△ABC中,∠ACB=90°,BC=a, AC=b,O为AB的中点.分别以AC,BC 为边向△ABC外作正方形ACFG,BCED,连结OF, EF, OE,则△OEF的面积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,为了测量池塘边
、
两地之间的距离,在线段
的同侧取一点
,连结
并延长至点
,连结
并延长至点
,使得
、
分别是
、
的中点,若
,则线段
的长度是( )
















A.![]() | B.![]() | C.![]() | D.![]() |