- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 平行四边形的性质
- 利用平行四边形的性质求解
- 利用平行四边形的性质证明
- 平行四边形性质的其他应用
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在□ABCD中,E为BC的中点,过点E作EF⊥AB于点F,延长DC,交FE的延长线于点G,连结DF,已知∠FDG=45°.
(1)求证:GD=GF;
(2)已知BC=10,DF=8
,求CD的长.
(1)求证:GD=GF;
(2)已知BC=10,DF=8


如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____ .

如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,
(1)求证:四边形AECF为平行四边形;
(2)如果PA=PE,联结BP,求证:△APB≌△EPC.
(1)求证:四边形AECF为平行四边形;
(2)如果PA=PE,联结BP,求证:△APB≌△EPC.

我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,
,
,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为
),相应地,点C的对应点
的坐标为_______ .





在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于
AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.


如图,在平行四边形ABCD中,∠ADC的角平分线交边AB于点E,连接CE,若∠ADE=25°,∠BCE=15°,则∠BEC的度数为( )


A.115° | B.120° | C.125° | D.130° |