- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 平行四边形的性质
- 利用平行四边形的性质求解
- 利用平行四边形的性质证明
- 平行四边形性质的其他应用
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F两点,垂足是点O.

(1) 求证:△AOE≌△COF;
(2) 问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明)

(1) 求证:△AOE≌△COF;
(2) 问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明)
四边形ABCD 中,AB=3,BC=4,E,F 是对角线 AC上的两个动点,分别从 A,C 同时出发,相向而行,速度均为 1cm/s,运动时间为 t 秒,当其中一个动点到达后就停止运动.
(1)若 G,H 分别是 AB,DC 中点,求证:四边形 EGFH 始终是平行四边形.
(2)在(1)条件下,当 t 为何值时,四边形 EGFH 为矩形.
(3)若 G,H 分别是折线 A﹣B﹣C,C﹣D﹣A 上的动点,与 E,F 相同的速度同时出发,当 t 为何值时,四边形 EGFH 为菱形.
(1)若 G,H 分别是 AB,DC 中点,求证:四边形 EGFH 始终是平行四边形.
(2)在(1)条件下,当 t 为何值时,四边形 EGFH 为矩形.
(3)若 G,H 分别是折线 A﹣B﹣C,C﹣D﹣A 上的动点,与 E,F 相同的速度同时出发,当 t 为何值时,四边形 EGFH 为菱形.

如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=C
A.![]() (1)求证:四边形EFGH是平行四边形; (2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形. |
已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于

A. (1)求证:四边形AGBD为平行四边形; (2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论. |

如图,在□ABCD中,点E在AD上,以BE为折痕将△ABE翻折,点A恰好落在CD边上的点F处. 已知△EDF的周长为12,△BCF的周长为22,求CF的长.

求证:对角线互相垂直的平行四边形是菱形.
小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.
已知:如图,在▱ABCD中,对角线AC,BD交于点O, .
求证: .
小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.
已知:如图,在▱ABCD中,对角线AC,BD交于点O, .
求证: .

下列命题:
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是( )
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).
