- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,平行四边形ABCD中,对角线AC、BD相交于点O,AD=
DB,点E、F、G分别是AO、BO、DC的中点,连接EF、DE、EG、GF.

(1)求证:四边形DEFG是平行四边形;
(2)求证:EG=EF.


(1)求证:四边形DEFG是平行四边形;
(2)求证:EG=EF.
如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,
,
,且EG平分
求证:
≌
;
四边形EFGH是菱形.







如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接C
A.![]() (1)判断直线DE与半圆O的位置关系,并说明理由; (2)若半圆O的半径为12,求涂色部分的周长. |
嘉琪同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图所示的□ABCD,并写出了如下尚不完整的已知和求证.
已知:如图,在四边形ABCD中,BC=AD,AB= .
求证:四边形ABCD是 四边形.
(1)补全已知和求证(在方框中填空);
(2)嘉琪同学想利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.请你按她的想法完成证明过程.
已知:如图,在四边形ABCD中,BC=AD,AB= .
求证:四边形ABCD是 四边形.
(1)补全已知和求证(在方框中填空);
(2)嘉琪同学想利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.请你按她的想法完成证明过程.

如图,平行四边形ABCD的对角线AC、BD相较于点O,EF过点O,且与AD、BC分别相交于E、F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是( )


A.16 | B.14 | C.12 | D.10 |