- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在菱形ABCD中,AB=4,∠ADN=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N.连接MD、AN,
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为_____时,四边形AMON是矩形;
②当AM的值为______时,四边形AMDN是菱形.
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为_____时,四边形AMON是矩形;
②当AM的值为______时,四边形AMDN是菱形.

如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为( )


A.仅小明对 | B.仅小亮对 | C.两人都对 | D.两人都不对 |
如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是( )


A.AB=BC | B.AC⊥BD | C.∠ABC=90° | D.∠1=∠2 |
已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.

下列命题不正确的是( )
A.两组对边分别平行的四边形是平行四边形 | B.一组对边平行,另一组对边相等的四边形是平行四边形 |
C.对角线互相平分的四边形是平行四边形 | D.两组对边分别相等的四边形是平行四边形 |
如图,已知∠A,以点A为圆心,恰当长为半径画弧,分别交AE,AF于点B,D,继续分别以点B,D为圆心,线段AB长为半径画弧交于点C,连接BC,CD,则所得四边形ABCD为菱形,判定依据是:_____ .

如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()


A.15m | B.25m | C.30m | D.20m |