- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C
作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在
图3中补全图形,注明字母,直接写出结论,不需证明)
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C
作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在
图3中补全图形,注明字母,直接写出结论,不需证明)

已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m= .
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴
翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3
中补全小贝同学翻折后的图形;②请你根据①中的图形,求出m的取值范围,并简要说明理
由.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m= .
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴
翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3
中补全小贝同学翻折后的图形;②请你根据①中的图形,求出m的取值范围,并简要说明理
由.

如图,把长为2cm的正方形剪成四个全等的直角三角形,请用这四个直角三角形(全部用上)拼成下列符合要求的图形(互不重叠且没有空隙),并把你的拼法画在下列的方格纸内(方格为1cm×1cm)

(1)画一个不是正方形的菱形;(2)画一个不是正方形的矩形

(3)画一个不是矩形也不是菱形的平行四边形(4)画一个梯形

(1)画一个不是正方形的菱形;(2)画一个不是正方形的矩形

(3)画一个不是矩形也不是菱形的平行四边形(4)画一个梯形

如图,在等腰梯形ABCD中,AB‖CD,已知
,
,
,以
所在直线为
轴,
为坐标原点,建立直角坐标系,将等腰梯形ABCD绕A点按顺时针方向旋转
得到等腰梯形OEFG(O、E、F、G分别是A、B、C、D旋转后的对应点)(如图).

⑴在直线DC上是否存在一点
,使
为等腰三角形,若存在,写出出
点的坐标,若不存在,请说明理由.
⑵将等腰梯形ABCD沿
轴的正半轴平行移动,设移动后的
(0<x≤6),等腰梯形ABCD与等腰梯形OEFG重叠部分的面积为
,求
与
之间的函数关系式.并求出重叠部分的面积的最大值。








⑴在直线DC上是否存在一点



⑵将等腰梯形ABCD沿





平面内两条直线
∥
,它们之间的距离等于a,一块正方形纸板
的边长也等于a.现将这块硬纸板如图所示放在两条平行线上.

(1)如图1,将点C放置在直线
上,且
于O,使得直线
与
、
相交于E、F.求证:①BE="OE" ②
的周长等于
;
(2)如图2,若绕点C转动正方形硬纸板
,使得直线
与
、
相交于E、F,试问
的周长等于
还成立吗?并证明你的结论;

(3)如图3,将正方形硬纸片
任意放置,使得直线
与
、
相交于E、F,直线
与
、CD相交于G,H,设
AEF的周长为
,
CGH的周长为
,试问
,
和
之间存在着什么关系?试直接写出你的结论(不需证明).




(1)如图1,将点C放置在直线







(2)如图2,若绕点C转动正方形硬纸板







(3)如图3,将正方形硬纸片















如图1,在等腰梯形ABCO中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A,B在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
下列命题是真命题的是()
A.对角线相等的四边形是矩形 | B.一组邻边相等的四边形是菱形 |
C.四个角是直角的四边形是正方形 | D.对角线相等的梯形是等腰梯形 |