- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- + 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,一圆柱高8cm,底面半径为
cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是( )



A.6cm | B.8cm | C.10cm | D.12cm |
如图,长方体的底面边长分别为 1cm 和 4cm,高为 6cm.如果用一根细线从点 A 开始经过 4 个侧面缠绕 n 圈到达点 B,那么所用细线最短需要_______________cm.(结果用含 n 的代数式表示)

如图,已知正方体纸盒的表面积为12cm2;

(1)求正方体的棱长;
(2)剪去盖子后,插入一根长为5cm的细木棒,则细木棒露在外面的最短长度是多少?
(3)一只蚂蚁在纸盒的表面由A爬到B,求蚂蚁行走的最短路线.

(1)求正方体的棱长;
(2)剪去盖子后,插入一根长为5cm的细木棒,则细木棒露在外面的最短长度是多少?
(3)一只蚂蚁在纸盒的表面由A爬到B,求蚂蚁行走的最短路线.
如图,某住宅小区在施工过程中留下了一块空地,已知AB=AC=13米,BD=8米,CD=6米,∠BDC=90°,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元。试问用该草坪铺满这块空地共需花费多少元?

如图,圆柱的高为50cm,底面圆的周长为120cm,一只蚂蚁从A点出发绕圆柱的侧面,爬到圆柱的母线AB的另一端B点,则蚂蚁爬行的最短路线长是_____.
