- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,每个小正方形的边长都是1,图中A,B,C,D四个点分别为小正方形的顶点,下列说法:①△ACD的面积是有理数;②四边形ABCD的四条边的长度都是无理数;③四边形ABCD的三条边的长度是无理数,一条边的长度是有理数.其中说法正确的有( )


A.0个 | B.1个 | C.2个 | D.3个 |
如图,图中是16个边长为1的小正方形拼成的大正方形,连接CA,CB,CD,CE四条线段,其中长度既不是整数也不是分数的有____条.

已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )
A.3.0<AB<3.1 | B.3.1<AB<3.2 |
C.3.2<AB<3.3 | D.3.3<AB<3.4 |
如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是__.(结果保留根号)
