- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=
EF,则正方形ABCD的面积为_______.


图①、图②均是6×6的正方形网格,每个小正方形的顶点叫做格点,每个小正方形的边长均为1.

(1)在图①中,以格点为端点,画线段MN=
.
(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.

(1)在图①中,以格点为端点,画线段MN=

(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为





A.9 | B.6 | C.4 | D.3 |
如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.
(1)分别求出AB,BC,AC的长;
(2)试判断△ABC是什么三角形,并说明理由.
(1)分别求出AB,BC,AC的长;
(2)试判断△ABC是什么三角形,并说明理由.

如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=__________.
