如图,在等边△ABC中,D为AB上一点,连接CD,在CD上取一点E,连接BE,且∠BED=60°,若CE=5,△ACD的面积为
,则线段DB的长为_____.


如图所示,点
是线段
的中点,
,
.

(1)如图1,若
,求证
是等边三角形;
(2)如图1,在(1)的条件下,若点
在射线
上,点
在点
右侧,且
是等边三角形,
的延长线交直线
于点
,求
的长度;
(3)如图2,在(1)的条件下,若点
在线段
上,
是等边三角形,且点
沿着线段
从点
运动到点
,点
随之运动,求点
的运动路径的长度.





(1)如图1,若


(2)如图1,在(1)的条件下,若点









(3)如图2,在(1)的条件下,若点









如图,
是边长为6的等边三角形,
是
边上一动点,由
向
运动(与
、
不重合),
是
延长线上一动点,与点
同时以相同的速度由
向
延长线方向运动(
不与
重合),过
作
于
,连接
交
于
.

(1)当
时,求
的长;
(2)在运动过程中线段
的长是否发生变化?如果不变,求出线段
的长;如果发生改变,请说明理由.





















(1)当


(2)在运动过程中线段


如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,连接AD,点E在BC上,∠CDE=45°,DE交AB于点F,CD=6.
(1)求∠OAD的度数;
(2)求DE的长.
(1)求∠OAD的度数;
(2)求DE的长.

已知PA=2,PB=4
,以AB为边作等边△ABC,使P、C落在直线AB的两侧,连接PC.
(1)如图,当∠APB=30°时,
①按要求补全图形;②求AB和PC的长.
(2)当∠APB变化时,其它条件不变,则PC的最大值为 ,此时∠APB= .

(1)如图,当∠APB=30°时,
①按要求补全图形;②求AB和PC的长.
(2)当∠APB变化时,其它条件不变,则PC的最大值为 ,此时∠APB= .

如图,已知
与
,
平分
.

(1)如图1,
与
的两边分别相交于点
、
,
,试判断线段
与
的数量关系,并说明理由.
以下是小宇同学给出如下正确的解法:
解:
.
理由如下:如图1,过点
作
,交
于点
,则
,
…
请根据小宇同学的证明思路,写出该证明的剩余部分.
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
(3)若
,
.
①如图3,
与
的两边分别相交于点
、
时,(1)中的结论成立吗?为什么?线段
、
、
有什么数量关系?说明理由.
②如图4,
的一边与
的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段
、
、
有什么数量关系;如图5,
的一边与
的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段
、
、
有什么数量关系.







(1)如图1,







以下是小宇同学给出如下正确的解法:
解:

理由如下:如图1,过点





…
请根据小宇同学的证明思路,写出该证明的剩余部分.
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
(3)若


①如图3,







②如图4,












