- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 根据等边对等角求角度
- 根据等边对等角证明
- 根据三线合一求解
- 根据三线合一证明
- 等腰三角形的定义
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图△ABC 中,AC=BC,∠ACB=120°,点 D 在线段 AB 上运动(D 不与 A、B 重合),连接 CD,作∠CDE=30°,DE 交 BC 于点 E,若△CDE 是等腰三角形,则∠ADC 的度数是___________.

已知,如图 AB=AC,∠BAC=40°,D 为 AB 边上的一点,过 D 作 DF⊥AB,交 AC 于 E,交 BC 延长线于点 F 则∠F=________°.

如图,已知在Rt△ABC中,∠C=90°,AC=BC=10,点D,E在线段BC上,且CD=2,BE=5,点P,Q分别是线段AC,AB上的动点,则四边形PQED周长的最小值为_____.

已知A(a,0),B(0,b),且a、b满足
.

(1)填空:a= ,b= ;
(2)如图1,将ΔAOB沿x轴翻折得ΔAOC,D为线段AB上一动点,OE⊥OD交AC于点E,求S四边形ODA
(3)如图2,D为AB上一点,过点B作BF⊥OD于点G,交x轴于点F,点H为x轴正半轴上一点,∠BFO=∠DHO,求证:AF=OH.


(1)填空:a= ,b= ;
(2)如图1,将ΔAOB沿x轴翻折得ΔAOC,D为线段AB上一动点,OE⊥OD交AC于点E,求S四边形ODA
A. |
如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结E
(1)求∠ECD的度数.
(2)若CE=9,求BC的长.
A. |
(2)若CE=9,求BC的长.

如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )


A.40° | B.36° | C.30° | D.25° |