在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).
(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .

(3)等边三角形的巧妙点的个数有( )
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).

(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .

(3)等边三角形的巧妙点的个数有( )
A.2 | B.6 | C.10 | D.12 |
已知:在△ABC中,AB=AC,D是BC的中点,动点E在边AB上(点E不与点A,B重合), 动点F在射线AC上,连结DE, D
(1)如图1,当∠DEB=∠DFC=90°时,直接写出DE与DF的数量关系;

(2)如图2,当∠DEB+∠DFC=180°(∠DEB≠∠DFC)时,猜想DE与DF的数量关系,并证明;

(3)当点E,D,F在同一条直线上时,
①依题意补全图3;
②在点E运动的过程中,是否存在EB=FC? (填“存在”或“不存在” ).
A. |

(2)如图2,当∠DEB+∠DFC=180°(∠DEB≠∠DFC)时,猜想DE与DF的数量关系,并证明;

(3)当点E,D,F在同一条直线上时,
①依题意补全图3;
②在点E运动的过程中,是否存在EB=FC? (填“存在”或“不存在” ).

小峰和同学探究一个问题:圆上的一点(不与已知直径端点重合)到圆直径两端点的距离与直径的数量关系.如图1,他们以
为直径作了一个圆,圆心为
,在圆上取了三个不与点
重合的三点
,连接
.

(1)通过观察,可猜想
都是 三角形.请用图2中的
来请证明你的猜想并写出
与
的数量关系.
(2)如图3,若
且
比
少
,求圆
的直径
的长.
(3)如图4,动点
以每秒
个单位长度的速度从点
出发,沿直径
往点
运动,当运动到点
时停止在 (2)的条件下,当
秒时,
是等腰三角形.









(1)通过观察,可猜想




(2)如图3,若






(3)如图4,动点







