- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- + 全等的判定综合
- 使三角形全等所需添加的条件
- 灵活选用判定方法证全等
- 结合尺规作图的全等问题
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 (只写一个条件即可).

如图,已知,
,AC=A


A.给出下列条件: ①AB=AE;②BC=ED;③![]() ![]() ![]() |

如图,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t(s).

(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
如图,已知点A、B以及直线l,AE⊥l,垂足为点E.

(1)过点B作BF⊥l,垂足为点F;
(2)在直线l上求作一点C,使CA=CB;
(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(3)在所作的图中,连接CA、CB,若∠ACB=90°,求证:△AEC≌△CFB.

(1)过点B作BF⊥l,垂足为点F;
(2)在直线l上求作一点C,使CA=CB;
(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(3)在所作的图中,连接CA、CB,若∠ACB=90°,求证:△AEC≌△CFB.
如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________ .

如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.
(1)你添加的条件是
(2)在(1)的条件下,不再添加辅助线和字母,证明DE=DF
(1)你添加的条件是
(2)在(1)的条件下,不再添加辅助线和字母,证明DE=DF

已知等腰△ABC中,AB=AC,∠ABC的平分线交AC于D,过点A作AE // BC交BD的延长线于点E,∠CAE的平分线交BE于点

A. (1)①如图,若∠BAC=36o,求证:BD=EF; ![]() ②如图,若∠BAC=60o,求 ![]() ![]() (2)如图,若∠BAC=60o,过点D作DG// BC,交AB于点G,点N为BC中点,点P, M分别是GD, BG上的动点,且∠PNM=60°. 求证:AP=PN=MN. |
