如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,F为EC的中点,连接AF.写出AF与BD的数量关系和位置关系,并说明理由.

如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.

(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
如图,在直角三角形ABC中,∠BCA=90
,∠A=60
,CD是角平分线,在CB上截取CE=C



A. 求证:⑴ DE=BE; ⑵ 若AC=1,AD= ![]() |

如图,等腰直角△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,NE.下列结论:①AE=AF;②AM⊥EF;③△AEF是等边三角形;④DF=DN,⑤AD∥NE.其中正确的结论有( )


A.1个 | B.2个 | C.3个 | D.4个 |
下列命题是真命题的是( )
A.三角形的一个外角大于它的任何一个内角 | B.两边及其夹角分别相等的两个三角形全等 |
C.同旁内角互补 | D.两个锐角之和一定是钝角 |
如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是( )


A.m﹣a>b﹣n | B.m﹣a<b﹣n | C.m﹣a=b﹣n | D.m﹣a>b﹣n或m﹣a<b﹣n |