- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在
中,
是
的平分线,
于
,
于
,并且
,动点
以
的速度从
点向
点运动,动点
以
的速度从点
向点
运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为
.

(1)求证:在运动过程中,不管
取何值,都有
;
(2)当
取何值时,
与
全等;
(3)若
,当
时
,求此时
的面积
.


















(1)求证:在运动过程中,不管


(2)当



(3)若





有一块三角形的草坪△ABC,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在 ( )
A.△ABC三条角平分线的交点 | B.△ABC三边的垂直平分线的交点 |
C.△ABC三条中线的交点 | D.△ABC三条高所在直线的交点 |
在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N

(1)如图①,若∠BAC=110°,则∠MAN= °,若△AMN的周长为9,则BC=
(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;
(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长

(1)如图①,若∠BAC=110°,则∠MAN= °,若△AMN的周长为9,则BC=
(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;
(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长
(l)观察猜想:如图①,点
、
、
在同一条直线上,
,
且
,
,则
和
是否全等?__________(填是或否),线段
之间的数量关系为__________
(2)问题解决:如图②,在
中,
,
,
,以
为直角边向外作等腰
,连接
,求
的长。
(3)拓展延伸:如图③,在四边形
中,
,
,
,
,
于点
.求
的长.










(2)问题解决:如图②,在








(3)拓展延伸:如图③,在四边形








