- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在等边三角形ABC中,AC=9,点O在AC上,点E在AB上,点F在BC上,且AO=3,OE=OF,∠EOF=60°,则BF的长是( )


A.4 | B.8 | C.5 | D.6 |
如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是( )


A.1 | B.2 | C.3 | D.4 |
如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,AD与BE交于点O,AD与BC交于点P,CD与BE交于点Q,连接PQ
(1)求证:AD=BE;
(2)∠AOB的度数为 ;PQ与AE的位置关系是 ;
(3)如图2,△ABC固定,将△CDE绕点C按顺时针(或逆时针)方向旋转任意角度α,在旋转过程中,(1)中的结论是否总成立?∠AOB的度数是否改变?并说明理由.
(1)求证:AD=BE;
(2)∠AOB的度数为 ;PQ与AE的位置关系是 ;
(3)如图2,△ABC固定,将△CDE绕点C按顺时针(或逆时针)方向旋转任意角度α,在旋转过程中,(1)中的结论是否总成立?∠AOB的度数是否改变?并说明理由.

在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF
(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.
(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.

(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF
(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.
(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.