- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:
(1)如图①,BC与BD的数量关系是 ;
(2)如图①,CD与AB的数量关系是 ;并说明理由.
猜想验证:
(3)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;
拓展延伸:
(4)若点P是线段CB延长线上一动点,按照(3)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.
(1)如图①,BC与BD的数量关系是 ;
(2)如图①,CD与AB的数量关系是 ;并说明理由.
猜想验证:
(3)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;
拓展延伸:
(4)若点P是线段CB延长线上一动点,按照(3)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.

如图,点D,E分别在AC,AB上.

【小题1】(1) 已知,BD=CE,CD=BE,求证:AB=AC;
【小题2】(2) 分别将“BD=CE”记为①,“CD=BE” 记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是
命题.(选择“真”或“假”填入空格).

【小题1】(1) 已知,BD=CE,CD=BE,求证:AB=AC;
【小题2】(2) 分别将“BD=CE”记为①,“CD=BE” 记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是
命题.(选择“真”或“假”填入空格).
如图所示,是北京某街道的部分示意图,AD平分
,
,
,垂足分别是E,F,且
,2008年北京奥运会,熊熊燃烧的奥运圣火在这个城市传递了和平、友谊、进步的“和平之旅”传递路线有两种.
路线一:沿B→E→D→A的顺序传递到A;
路线二:沿A→D→F→C的顺序传递到C.

为了使奥运圣火传递路线更长,请你判断哪条路线最佳,说明你的理由.




路线一:沿B→E→D→A的顺序传递到A;
路线二:沿A→D→F→C的顺序传递到C.

为了使奥运圣火传递路线更长,请你判断哪条路线最佳,说明你的理由.
如图所示,D为△ABC边BC上任意一点,F、E分别为AB、AC的中点,NN连接DF并延长至点M,使
,连接DE并延长至点N,使
,连接MN,试判断MN与BC的位置关系,并证明你的结论.


