- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 三角形的内角和定理
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,若CE∥AB,求∠BEC的度数;
(2)若CE平分∠ACB,在备用图中画出CE,求∠BEC的度数.
(1)如图1,连接CE,若CE∥AB,求∠BEC的度数;
(2)若CE平分∠ACB,在备用图中画出CE,求∠BEC的度数.

如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为( )


A.50° | B.98° | C.75° | D.80° |
在数学学习中整体思想与转化思想是我们常用到的数学思想.
图(1)中,求∠A+∠B+∠C+∠D+∠E的度数等于多少时,我们可以连接CD,利用三角形的内角和则有∠B+∠E=∠ECD+∠BDC,这样∠A、∠B、∠C、∠D、∠E的和就转化到同一个△ACD中,即∠A+∠B+∠C+∠D+∠E=_____.
图(2)中∠A+∠B+∠C+∠D+∠E的度数等于______.
图(3)中∠A+∠B+∠C+∠D+∠E的度数等于________.
图(4)中∠A+∠B+∠C+∠D+∠E+∠F的度数等于________.
图(1)中,求∠A+∠B+∠C+∠D+∠E的度数等于多少时,我们可以连接CD,利用三角形的内角和则有∠B+∠E=∠ECD+∠BDC,这样∠A、∠B、∠C、∠D、∠E的和就转化到同一个△ACD中,即∠A+∠B+∠C+∠D+∠E=_____.
图(2)中∠A+∠B+∠C+∠D+∠E的度数等于______.
图(3)中∠A+∠B+∠C+∠D+∠E的度数等于________.
图(4)中∠A+∠B+∠C+∠D+∠E+∠F的度数等于________.
