- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)已知:如图1,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点O,求证:∠BOC=90°+
∠A;

(2)如图2,在△ABC中,BP,CP分别是△ABC的外角∠DBC和∠ECB的平分线,试探究∠BPC与∠A的关系.
(3)如图3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分线,试探究∠BEC与∠A的关系.


(2)如图2,在△ABC中,BP,CP分别是△ABC的外角∠DBC和∠ECB的平分线,试探究∠BPC与∠A的关系.
(3)如图3,在△ABC中,CE平分∠ACB,BE是△ABC的外角∠ABD的平分线,试探究∠BEC与∠A的关系.
1.概念学习.已知
,点
为其内部一点,连接
、
、
,在
、
、
中,如果存在一个三角形,其内角与
的三个内角分别相等,那么就称点
为
的等角点.

2.理解应用
(1)判断以下两个命题是否为真今题,若为真令题,则在相应横线内写“真命题”;反之,则写“假命题”.
①内角分别为
、
、
的三角形存在等角点; ;
②任意的三角形都存在等角点; ;
(2)如图①,点
是锐角
的等角点,若
,探究图①中,
、
、
之间的数量关系,并说明理由.
3.解决问题
如图②,在
中,
,若
的三个内角的角平分线的交点
是该三角形的等角点,求
三角形三个内角的度数.












2.理解应用
(1)判断以下两个命题是否为真今题,若为真令题,则在相应横线内写“真命题”;反之,则写“假命题”.
①内角分别为



②任意的三角形都存在等角点; ;
(2)如图①,点






3.解决问题
如图②,在





小明在学习三角形的知识时, 发现如下三个有趣的结论:
(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E, 则BE、DE的位置关系是 ;
(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是 ;
(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE的位置关系是 . 请你完成命题 (3)证明.
(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E, 则BE、DE的位置关系是 ;
(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是 ;
(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE的位置关系是 . 请你完成命题 (3)证明.

如图, A为x轴负半轴上一点, B为x轴正半轴上一点, C(0,-2),D(-3,-2).
(1)求△BCD的面积;

(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系, 并证明你的结论.

(1)求△BCD的面积;

(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系, 并证明你的结论.

如图,在△ABC 中,∠B=70°, ∠C=40°,AD 是 BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是( )


A.15° | B.16° | C.70° | D.18° |