- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 三角形的内角和定理
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.
(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.

△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________;若BN、CN分别平分∠ABC,∠ACB的外角,则∠N=_________
在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠ACD=70°,∠ABD=40°,求∠EAD;
(2)∠ACD=α,∠ABD=β,∠AED为 .
(1)若∠ACD=70°,∠ABD=40°,求∠EAD;
(2)∠ACD=α,∠ABD=β,∠AED为 .
在平面直角坐标系中,C点在y轴上,B点在x轴上,A点从C点出发沿正西运动,B点在x轴上运动.

(1)如图1当∠ABC=∠ABD,作∠CBO的平分线交AC的延长线于E,作CF⊥EB于F.求证:∠ABD=∠ECF;
(2)如图2,在(1)的条件下,延长AB与∠BCO的平分线交于M点,下列结论:
①∠M的度数不变;
②∠ABC﹣∠M的值不变,可以证明只有一个结论正确,请你作出正确的选择并求值.

(1)如图1当∠ABC=∠ABD,作∠CBO的平分线交AC的延长线于E,作CF⊥EB于F.求证:∠ABD=∠ECF;
(2)如图2,在(1)的条件下,延长AB与∠BCO的平分线交于M点,下列结论:
①∠M的度数不变;
②∠ABC﹣∠M的值不变,可以证明只有一个结论正确,请你作出正确的选择并求值.