某数学活动小组在做角的拓展图形练习时,经历了如下过程:

(1)操作发现:点
为直线
上一点,过点
作射线
,使
将一直角三角板的直角顶点放在点
处,一边
在射线
上,另一边
在直线
的下方,如图:将图1中的三角板绕点
旋转,当直角三角板的
边在
的内部,且恰好平分
时,如图2.则下列结论正确的是 (填序号即可).
①
②
③
平分
④
的平分线在直线
上
(2)数学思考:同学们在操作中发现,当三角板绕点
旋转时,如果直角三角板的
边在
的内部且另一边
在直线AB的下方,那么
与
的差不变,请你说明理由;如果直角三角板的
、
边都在
的内部,那么
与
的和不变,请直接写出
与
的和,不要求说明理由.
(3)类比探索:三角板绕点
继续旋转,当直角三角板的
边在
的内部时,如图3,求
与
相差多少度?为什么?

(1)操作发现:点














①






(2)数学思考:同学们在操作中发现,当三角板绕点













(3)类比探索:三角板绕点





如图O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;
(2)试判断OE是否平分∠BOC,并说明理由.

(1)求∠BOD的度数;
(2)试判断OE是否平分∠BOC,并说明理由.
如图,已知O是直线AB上一点,∠BOC<90°,三角板(MON)的直角顶点落在点O处现将三角板绕着点O旋转,并保持OM和OC在直线AB的同一侧.
(1)若∠BOC=50°
①当OM平分∠BOC时,求∠AON的度数.
②当OM在∠BOC内部,且∠AON=3∠COM时,求∠CON的度数:
(2)当∠COM=2∠AON时,请画出示意图,猜想∠AOM与∠BOC的数量关系,并说明理由.
(1)若∠BOC=50°
①当OM平分∠BOC时,求∠AON的度数.
②当OM在∠BOC内部,且∠AON=3∠COM时,求∠CON的度数:
(2)当∠COM=2∠AON时,请画出示意图,猜想∠AOM与∠BOC的数量关系,并说明理由.

已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BO
A.![]() (1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为 . (2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由. (3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC ![]() |








(1)画出图形;
(2)若



(3)通过对以上的解题回顾,你发现



如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)

(1)如图1,若CF平分∠ACE,则∠AOF=_______;
(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.
①当t=1时,α=_________;
②猜想∠BCE和α的数量关系,并证明;
(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α-β|=45°,请用t的式子表示α、β并直接写出t的值.

(1)如图1,若CF平分∠ACE,则∠AOF=_______;
(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.
①当t=1时,α=_________;
②猜想∠BCE和α的数量关系,并证明;
(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α-β|=45°,请用t的式子表示α、β并直接写出t的值.
如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE= ;
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE= ;
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.

已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其补角的度数;
(2)求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由;
(3)若∠BOC=α,∠AOC=β,则∠DOE 与∠AOB是否互补,并说明理由.
(1)求出∠AOB及其补角的度数;
(2)求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由;
(3)若∠BOC=α,∠AOC=β,则∠DOE 与∠AOB是否互补,并说明理由.
