- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一辆货车从
地开往
地,一辆小汽车从
地开往
地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为
(千米),货车行驶的时间为
(小时),
与
之间的函数关系如图所示.下列说法中正确的有()
①
两地相距60千米;
②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.









①

②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.

A.1个 | B.2个 | C.3个 | D.4个 |
某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.
(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?
(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;
(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?
行李的重量xkg | 快递费 |
不超过1kg | 10元 |
超过1kg但不超过5kg的部分 | 3元/kg |
超过5kg但不超过15kg的部分 | 5元/kg |
(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?
(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;
(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?

某公司需要购买甲、乙两种商品共150件,甲、乙两种商品的价格分别为600元和1000元
且要求乙种商品的件数不少于甲种商品件数的2倍
设购买甲种商品x件,购买两种商品共花费y元.
请求出y与x的函数关系式及x的取值范围.
试利用函数的性质说明,当购买多少件甲种商品时,所需要的费用最少?




我国是世界上严重缺水的国家之一。为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费。即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费。设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示。
(1)求a的值;某户居民上月用水8吨,应收水费多少元?
(2)求b的值,并写出当x>10时,y与x之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
(1)求a的值;某户居民上月用水8吨,应收水费多少元?
(2)求b的值,并写出当x>10时,y与x之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?

在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=_____.
某中学组织学生到距离学校7km的神舟科技馆去参观,学生李伟因事耽误没能乘上学校的专车,于是准备在学校门口改乘出租车去神舟科技馆,出租车的收费标准如下:
李伟同学身上仅有10元钱,乘出租车支科技馆的车费够不够?为什么?
里程 | 收费 |
3km以内(含3km) | 5.00元 |
3km以上,每增加1km | 1.20元 |
李伟同学身上仅有10元钱,乘出租车支科技馆的车费够不够?为什么?
2019年1月同一时刻北京时间与英国伦敦时间分别为20:00和12:00.设北京时间为t(时),伦敦时间为y(时).
(1)请在表格的空格内填入合适的数字;
(2)当8≤t≤24时,请直接写出y关于t的函数表达式;
(3)如果一航班在1月10日于北京时间13:00从上海起飞,到达英国伦敦当地时间为1月10日17:30,求该航班在途中经历了多少时间?
(1)请在表格的空格内填入合适的数字;
北京时间 | 8:30 | | 22:30 |
伦敦时间 | | 12:10 | |
(2)当8≤t≤24时,请直接写出y关于t的函数表达式;
(3)如果一航班在1月10日于北京时间13:00从上海起飞,到达英国伦敦当地时间为1月10日17:30,求该航班在途中经历了多少时间?
小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于
,超过
时,所有这种水果的批发单价均为3元
.图中折线表示批发单价
(元
)与质量
的函数关系.

(1)求图中线段
所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?







(1)求图中线段

(2)小李用800元一次可以批发这种水果的质量是多少?