- 数与式
- 方程与不等式
- 函数
- + 一次函数的图象和性质
- 正比例函数的定义
- 一次函数的定义
- 一次函数的图象
- 一次函数的性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图在平面直角坐标系XOY中,一次函数y=kx-k的图象经过A(2,2),与x轴、y轴分别交于点C、点
A.![]() (1)观察图像,直接写出使y≥0的x的取值范围; (2)求一次函数的解析式; (3)若点P是x轴上一点,且满足△PAB的面积是6,请求出点P的坐标. |
已知等腰三角形的周长为12.

(1)写出底边长y关于腰长x的函数表达式(x为自变量);
(2)写出自变量x的取值范围;
(3)在直角坐标系中,画出该函数的图像.

(1)写出底边长y关于腰长x的函数表达式(x为自变量);
(2)写出自变量x的取值范围;
(3)在直角坐标系中,画出该函数的图像.
如图,平面直角坐标系中,一次函数y=-2x+1的图像与y轴交于点
A.![]() (1)若点A关于x轴的对称点B在一次函数y=x+b的图像上,求b的值,并在同一坐标系中画出该一次函数的图像; (2)求这两个一次函数的图像与y轴围成的三角形的面积. |
某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销产量y(万件)与销售的天数x(天)的关系如图所示.根据图像按下列要求作出分析:

(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;
(2)已知销售一件产品获利0.9元,求在该产品日销量不变期间的利润有多少万元。

(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;
(2)已知销售一件产品获利0.9元,求在该产品日销量不变期间的利润有多少万元。
如图,在平面直角坐标系中,直线
与
轴、
轴分别交于点
,直线
与
轴、
轴分别交于点
,
,
的解析式为
,
的解析式为
且
,两直线的交点
。

(1)求直线
的解析式;
(2)求四边形
的面积;
(3)当
时,直接写出
的取值范围。
















(1)求直线

(2)求四边形

(3)当


甲、乙两人同时从A地前往相距5千米的B地,甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图像如图所示;乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式为

(1)在图中画出乙慢跑所行的路程关于时间的函数图像:
(2)甲修车后行驶的速度是每分钟_______米;
(3)甲、乙两人在出发后,中途_________分钟时相遇


(1)在图中画出乙慢跑所行的路程关于时间的函数图像:
(2)甲修车后行驶的速度是每分钟_______米;
(3)甲、乙两人在出发后,中途_________分钟时相遇
在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx-3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是__________.

如图,A(-2,2)、AB⊥x轴于点B,AD⊥y轴于点D,C(-2,1)为AB的中点,直线CD交x轴于点F.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交x轴于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.
