- 数与式
- 方程与不等式
- 函数
- 正比例函数的定义
- 一次函数的定义
- + 一次函数的图象
- 判断一次函数的图象
- 根据一次函数解析式判断其经过的象限
- 已知函数经过的象限,求参数的取值范围
- 一次函数图象与坐标轴的交点问题
- 画一次函数图象
- 一次函数图象平移问题
- 一次函数的性质
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB上任意一点(不与点A、B重合).CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE中点,则四边形ODEF的周长为_____.

对于平面上A、B两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点A、B的“领域”.
(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为 .
(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:
①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;
②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B,点A、B的“领域”的面积不超过16,直接写出m的取值范围.
(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为 .
(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:
①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;
②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B,点A、B的“领域”的面积不超过16,直接写出m的取值范围.
如图,直线
的解析式为
,它与坐标轴分别交于A,B两点.

(1)求出点A的坐标;
(2)动点C从y轴上的点
出发,以每秒1个单位长度的速度向y轴负半轴运动,求出点C运动的时间t,使得
为等腰三角形.



(1)求出点A的坐标;
(2)动点C从y轴上的点


在平面直角坐标系中,点
是坐标原点,一次函数
的图像与
轴分别交于
两点,点
的坐标为
.
(1)求点
坐标.
(2)求
的值.
(3)点
是一次函数
图像上的点,
的面积为6,求点
的坐标.






(1)求点

(2)求

(3)点




在如图所示的平面真角坐标系中,函数
的图象于
、
轴交于
、
两点,

(1)画出函数
的图象;并求出
的面积:
(2)函数
的图象向上平移
个单位长度得到
.请直接写出:当
时,
的取值范围.






(1)画出函数


(2)函数





已知等腰三角形的周长为12.

(1)写出底边长y关于腰长x的函数表达式(x为自变量);
(2)写出自变量x的取值范围;
(3)在直角坐标系中,画出该函数的图像.

(1)写出底边长y关于腰长x的函数表达式(x为自变量);
(2)写出自变量x的取值范围;
(3)在直角坐标系中,画出该函数的图像.
甲、乙两人同时从A地前往相距5千米的B地,甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图像如图所示;乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式为

(1)在图中画出乙慢跑所行的路程关于时间的函数图像:
(2)甲修车后行驶的速度是每分钟_______米;
(3)甲、乙两人在出发后,中途_________分钟时相遇


(1)在图中画出乙慢跑所行的路程关于时间的函数图像:
(2)甲修车后行驶的速度是每分钟_______米;
(3)甲、乙两人在出发后,中途_________分钟时相遇
如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点

A.过点C且与y=2x平行的直线交y轴于点 | B. (1)求直线CD的解析式; (2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围. |
