如图,正比例函数
的图象过点
.直线
沿y轴平行移动,与x轴,y轴分别交于点B,C,与直线OA交于点D.

(1)若点D在线段OA上(含端点),求b的取值范围;
(2)当点A关于直线BC的对称点A恰好落在y轴上时,求
的面积.




(1)若点D在线段OA上(含端点),求b的取值范围;
(2)当点A关于直线BC的对称点A恰好落在y轴上时,求

某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作,按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满,根据表中提供的信息,解答下列问题:
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应如何安排车辆?并求出最少总运费.
物资种类 | 食品 | 药品 | 生活用品 |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨所需运费(元/吨) | 120 | 160 | 100 |
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应如何安排车辆?并求出最少总运费.







(1)求


(2)求

如图,点M的坐标为(3,2),点P从原点O出发,以每秒1个单位的速度沿y轴向上移动,同时过点P的直线l也随之上下平移,且直线l与直线y=﹣x平行,如果点M关于直线l的对称点落在坐标轴上,如果点P的移动时间为t秒,那么t的值可以是____.

如图,点M的坐标为(3,2),动点P从点O出发,沿y轴以每秒1个单位的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,若点M关于l的对称点落在坐标轴上,设点P的移动时间为t,则t的值是__.

如图,在平面直角坐标系中,
为坐标原点.一次函数的图象与x轴交于点
,与y轴交于点B,与正比例函数
的图象交于点
.
(1)求一次函数的解析式;
(2)在x轴上寻找点P,使得
为等腰三角形,直接写出所有满足条件的点P的坐标;
(3)在直线AB上寻找点Q,使得
,求点Q的坐标.




(1)求一次函数的解析式;
(2)在x轴上寻找点P,使得

(3)在直线AB上寻找点Q,使得


下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.

(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;
(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.