“兄弟餐厅”采购员某日到集贸市场采购草鱼,若当天草鱼的采购单价
(元)与采购量
(斤)之间的关系如图,且采购单价不低于4元/斤.
(1)直接写出
关于
的函数关系式,并写出自变量的取值范围;
(2)若这天他采购草鱼的量不多于20斤,那么这天他采购草鱼最多用去多少钱?



(1)直接写出


(2)若这天他采购草鱼的量不多于20斤,那么这天他采购草鱼最多用去多少钱?

如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.

(1)右图反映的自变量、因变量分别是什么?
(2)爷爷每天从公园返回用多长时间?
(3)爷爷散步时最远离家多少米?
(4)爷爷在公园锻炼多长时间?
(5)计算爷爷离家后的2 0分钟内的平均速度.

(1)右图反映的自变量、因变量分别是什么?
(2)爷爷每天从公园返回用多长时间?
(3)爷爷散步时最远离家多少米?
(4)爷爷在公园锻炼多长时间?
(5)计算爷爷离家后的2 0分钟内的平均速度.
直线y=﹣
x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=
时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=


翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。修筑公路的里程y(千米)和所用时间x(天)的关系用下图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=
的图象。
(1)求点A的坐标;
(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。


(1)求点A的坐标;
(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。

蜡烛燃烧时余下的长度y(cm) 和燃烧的时间x(分钟)的关系如图所示。
(1)求燃烧50分钟后蜡烛的长度;
(2)这支蜡烛最多能燃烧多长时间。

(1)求燃烧50分钟后蜡烛的长度;
(2)这支蜡烛最多能燃烧多长时间。

如表,给出A、B两种上网宽带的收费方式:
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

收费方式 | 月使用费/元 | 包月上网时间/小时 | 超时费/(元/分) |
A | 30 | 20 | 0.05 |
B | 60 | 不限时 | |
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?
(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?
(2)小明共用多长时间到学校的?
(3)小明修车前的速度和修车后的速度分别是多少?
(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?

儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x _________ 时,选用个体车主较合算.


某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,超过部分按2.6元/m3计费。设每户家庭用水量为
时,应交水费y元。
(1)分别求出
和
时y与x的关系式;
(2)小明家第二季度交纳水费的情况如下:
小明家这个季度共用水多少立方米?

(1)分别求出


(2)小明家第二季度交纳水费的情况如下:
月份 | 四月份 | 五月份 | 六月份 |
交费金额 | 30元 | 34元 | 42.6元 |
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息回答下列问题:
(1)甲乙两地的距离是 .
(2)到达乙地后卸货用的时间是 .
(3)这辆汽车返回的速度是

(1)甲乙两地的距离是 .
(2)到达乙地后卸货用的时间是 .
(3)这辆汽车返回的速度是
