如图,直线y=-2x+8交x轴于A,交y轴于B i点p在线段AB上,过点P分别向x轴、y轴引垂线,垂足为C、D,设点P的横坐标为m,矩形PCOD的面积为S.

(1)求S与m的函数关系式; (2)当m取何值时矩形PCOD的面积最大,最大值是多少.

(1)求S与m的函数关系式; (2)当m取何值时矩形PCOD的面积最大,最大值是多少.
某班进行乒乓球比赛,班主任老师为鼓励同学们积极参与,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则该老师购买笔记本的方案共有( )
A.3种 | B.4种 | C.5种 | D.6种 |
甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)、甲、乙两人的速度各是多少?
(2)、求甲距A地的路程S与行驶时间t的函数关系式。
(3)、直接写出在什么时间段内乙比甲距离A 地更近?(用不等式表示)

(1)、甲、乙两人的速度各是多少?
(2)、求甲距A地的路程S与行驶时间t的函数关系式。
(3)、直接写出在什么时间段内乙比甲距离A 地更近?(用不等式表示)

某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同;
(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?
(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同;
(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?
(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.
如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=-x+b也随之移动.设移动时间为t秒.

(1)当t=1时,求l的解析式;
(2)若l与线段BM有公共点,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在y轴上.如不存在,请说明理由.

(1)当t=1时,求l的解析式;
(2)若l与线段BM有公共点,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在y轴上.如不存在,请说明理由.
2014年3月31日凌晨,重庆东水门长江大桥正式通车,重庆主城再添一座跨江大桥,为重庆的经济发展提供了帮助.王大爷为了感受重庆交通的发展,搭乘公交车从家去参观东水门长江大桥,预计1个小时能到达.行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是王大爷转乘轻轨去观看大桥(轻轨速度大于公交车速度),结果按预计时间到达.下面能反映王大爷距大桥的距离
(千米)与时间
(小时)的函数关系的大致图象是()










A. | B. | C. | D. |
(8分)某校校长暑假将带领校、市级“三好学生”去北京旅游.
甲旅行社说:“如果校长买全票,则其余学生可享受半价优惠.”
乙旅行社说:“包括校长在内全部票价6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费 (表达式) .
(2)当学生数量是多少时,两家旅行社的收费一样?
(3)就学生数x讨论,哪家旅行社更优惠.
甲旅行社说:“如果校长买全票,则其余学生可享受半价优惠.”
乙旅行社说:“包括校长在内全部票价6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费 (表达式) .
(2)当学生数量是多少时,两家旅行社的收费一样?
(3)就学生数x讨论,哪家旅行社更优惠.
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图.
(1)填空:A、C两港口间的距离为 km,a= ;
(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?

(1)填空:A、C两港口间的距离为 km,a= ;
(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?

在平面直角坐标系xOy中,一次函数y=-
x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.


(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.
