- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- + 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形
中,
分别从
同时出发,分别沿边
移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若
,
.当
为何值时,以
为顶点的四边形是平行四边形?









如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.

如图,四边形
中,
,
,
,
,
,动点
从点
出发以
的速度沿
的方向运动,动点
从点
出发以
的速度沿
方向运动,
,
两点同时出发,当
到达点
时停止运动,点
也随之停止,设运动的时间为
.

(1)求线段
的长;
(2)
为何值时,线段
将四边形
的面积分为
两部分.





















(1)求线段

(2)




如图,在矩形
中,
,
,点
从点
出发沿
以2
的速度向点终点
运动,同时点
从点
出发沿
以1
的速度向点终点
运动,它们到达终点后停止运动.

(1)几秒后,点
、
的距离是点
、
的距离的2倍;
(2)几秒后,
的面积是24
.














(1)几秒后,点




(2)几秒后,


如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发__秒时,四边形DFCE的面积为20cm2.

如图所示,在△ABC中,∠C=90°, AC=6cm,BC=8cm.点P沿AC边从点A向终点C以1cm/s的速度移动;同时点Q沿CB边从点C向终点B以2cm/s的速度移动,且当其中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使△PCQ的面积为9 cm²?

在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:

(1)当运动开始后1秒时,求△DPQ的面积;
(2)当运动开始后
秒时,试判断△DPQ的形状;
(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.

(1)当运动开始后1秒时,求△DPQ的面积;
(2)当运动开始后

(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P, Q两点同时停止运动.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点
(1)当
=_____s时,点P与点Q重合;
(2)当
为多少时,点D在QF上;
(3)是否存在某一时刻,使得正方形APDE的面积被直线QF平分?若存在,求出
的值;若不存在,请说明理由.
A.设点P的运动时间为![]() ![]() |

(2)当

(3)是否存在某一时刻,使得正方形APDE的面积被直线QF平分?若存在,求出


如图,在Rt△ABC中,∠B=90°,AB=BC=12 cm,点D从点A开始沿边AB以2 cm/s的速度向点B移动,移动过程中始终保持四边形DFCE(点E,F分别在AC,BC上)为平行四边形,则出发________s时,四边形DFCE的面积为20 cm2.
