- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- + 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在长方形
中,
=
,
=
,点
从点
开始沿边
向终点
以
的速度移动,与此同时,点
从点
开始沿边
向终点
以
的速度移动.如果
、
分别从
、
同时出发,当点
运动到点
时,两点停止运动.设运动时间为
秒.

(1)填空:______=______,______=______(用含t的代数式表示);
(2)当
为何值时,
的长度等于
?
(3)是否存在
的值,使得五边形
的面积等于
?若存在,请求出此时
的值;若不存在,请说明理由.























(1)填空:______=______,______=______(用含t的代数式表示);
(2)当



(3)是否存在




如图,在长方形ABCD中,AB=6cm,BC=10cm,若此长方形以2cm/s的速度沿着A→D方向移动,经过________秒平移后的长方形与原来长方形重叠部分的面积为24cm2.

如图,在
中,
,
,
,动点P从点A开始沿边AB向B以
的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以
的速度移动(不与点C重合),如果P、Q分别从A、B同时出发,设运动的时间为
,四边形APQC的面积为
.

(1)求y与x之间的函数关系式;写出自变量x的取值范围;
(2)当四边形APQC的面积等于
时,求x的值;
(3)四边形APQC的面积能否等于
?若能,求出运动的时间,若不能,说明理由.









(1)求y与x之间的函数关系式;写出自变量x的取值范围;
(2)当四边形APQC的面积等于

(3)四边形APQC的面积能否等于

如图,在Rt△ABC中∠C=90°,BC=7cm.动点P在线段AC上从点C出发,沿CA方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P,Q的运动速度均为lcm/s,那么运动几秒时,它们相距5cm.

如图,在Rt△ABC中,AC=6cm,BC=8cm.点M从点A出发,以每秒1cm的速度沿AC方向运动:同时点N从点C出发,以每秒2cm的速度沿CB方向运动,当点N到达点B时,点M同时停止运动.

(1)运动几秒时,△CMN的面积为8cm2?
(2)△CMN的面积能否等于12cm2?若能,求出运动时间:若不能,请说明理由.

(1)运动几秒时,△CMN的面积为8cm2?
(2)△CMN的面积能否等于12cm2?若能,求出运动时间:若不能,请说明理由.
如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于
cm?
(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.
(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于

(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.

如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.
(1)用含x的代数式表示BQ、PB的长度;
(2)当x为何值时,△PBQ为等腰三角形;
(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.
(1)用含x的代数式表示BQ、PB的长度;
(2)当x为何值时,△PBQ为等腰三角形;
(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.

等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点

(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.
A.设P点运动时间为t,△PCQ的面积为S. |

(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.