- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- + 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.

(1)当点P在线段AC上运动时,P、C两点之间的距离 cm.(用含t的代数式表示)
(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的
.若存在,求t的值;若不存在,说明理由.

(1)当点P在线段AC上运动时,P、C两点之间的距离 cm.(用含t的代数式表示)
(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的

如图Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,动点P从点A出发沿AB边以1cm/秒的速度向点B匀速移动,同时,点Q从点B出发沿BC边以2cm/秒的速度向点C匀速移动,当P、Q两点中有一个点到达终点时另一个点也停止运动.运动( )秒后,△PBQ面积为5cm2.


A.0.5 | B.1 | C.5 | D.1或5 |
Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒

(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的
,求t的值;
(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.

(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的

(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.
如图,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果点P在线段BC上以 2 cm/s 的速度由B点向C点运动,同时,点 Q在线段CA上以v cm/s 的速度由C点向A点运动,那么当△BPD 与△CQP全等时,v =( )


A.3 | B.4 | C.2或 4 D.2或3 |
如图,在
中,
,
,
,点
从点
开始沿
边向点
以
的速度移动,同时,点
从点
开始沿
边向点
以
的速度移动(到达点
,移动停止).

(1)如果
,
分别从
,
同时出发,那么几秒后,
的长度等于
?
(2)在(1)中,
的面积能否等于
?请说明理由.
















(1)如果






(2)在(1)中,


如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km.
(1)如果这艘轮船不改变航向,经过9小时,轮船与台风中心相距多远?它此时是否受到台风影响?
(2)如果这艘轮船会受到台风影响,那么从接到警报开始,经过多长时间它就会进入台风影响区?
(1)如果这艘轮船不改变航向,经过9小时,轮船与台风中心相距多远?它此时是否受到台风影响?
(2)如果这艘轮船会受到台风影响,那么从接到警报开始,经过多长时间它就会进入台风影响区?

如图所示,在△ABC中,∠C=90°,AC=5cm,BC=7cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为4cm2?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为4cm2?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.

如图,在
中,
,
,
,点
从点
出发沿
以
的速度向点
移动,移动过程中始终保持
,
(点
分别在线段
、线段
上).
(1)点
移动几秒后,
的面积等于
面积的四分之一;
(2)当四边形
面积
时,求点
移动了多少秒?














(1)点



(2)当四边形




如图,在
中,
,
,
,点
从点
开始沿
边向点
以
的速度移动,点
从点
开始沿
边向点
以2
的速度移动.
(1)如果点
,
分别从点
,
同时出发,那么几秒后,
的面积等于6
?
(2)如果点
,
分别从点
,
同时出发,那么几秒后,
的长度等于7
?














(1)如果点






(2)如果点






