- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- + 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度也向右匀速运动.

(1)运动t秒后,点B表示的数是 ;点C表示的数是 .(用含有t的代数式表示)
(2)求运动多少秒后,BC=4(单位长度);
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式
,若存在,求线段PD的长;若不存在,请说明理由.

(1)运动t秒后,点B表示的数是 ;点C表示的数是 .(用含有t的代数式表示)
(2)求运动多少秒后,BC=4(单位长度);
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式

根据下面给出的数轴,解答下面的问题:

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数A: B: ;
(2)观察数轴,与点A的距离为
的点表示的数是: ;
(3)若将数轴折叠,使得
点与0表示的点重合,则B点与数 表示的点重合;
(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则
、
两点表示的数分别是:M: ,N: .

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数A: B: ;
(2)观察数轴,与点A的距离为

(3)若将数轴折叠,使得

(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则


元旦期间各大商场某品牌衣服有促销活动,小芳看中了一款衣服,该衣服在甲、乙两商场标价相同,甲商场的促销方式是“7折优惠”,而乙商场的促销方式是“先让利80元,再打8折”.小芳算了算发现两个商场的实际售价相同,请你算一算这款衣服在甲、乙两商场的标价是多少元?
如图,数轴上A,B两点对应的数分别-4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动

(1)当运动到第2018次时,求点P所对应的有理数.
(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.

(1)当运动到第2018次时,求点P所对应的有理数.
(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.
点A、B在数轴上表示的数a、b,满足
(1)a的值为______,b的值为______;
(2)已知点M、点N是数轴上的两个动点,点M从点A出发,速度是每秒3个单位,同时点N从点B出发,速度是每秒1个单位:
① 若点M和点N在数轴上相向运动,经过t秒在C处相遇,求t的值和此时点C所表示的数;
② 若点M和点N在数轴上沿着数轴同向运动,经过若干秒,点M和点N相距2个单位,求此时点M和点N表示的数。

(1)a的值为______,b的值为______;
(2)已知点M、点N是数轴上的两个动点,点M从点A出发,速度是每秒3个单位,同时点N从点B出发,速度是每秒1个单位:
① 若点M和点N在数轴上相向运动,经过t秒在C处相遇,求t的值和此时点C所表示的数;
② 若点M和点N在数轴上沿着数轴同向运动,经过若干秒,点M和点N相距2个单位,求此时点M和点N表示的数。
数轴上任意两点之间的距离均可用“右﹣左”表示,即右边的数(较大)减去左边的数(较小).已知数轴上两点A、B对应的数分别为﹣2、5,则A、B两点之间的距离记为AB,且AB=5﹣(﹣2)=7.P为数轴上的动点,其对应的数为x.

(1)若点P到A,B两点的距离相等,写出点P对应的数;
(2)数轴上是否存在点P,使点P到A,B两点的距离之和为11,若存在,请求出x的值;若不存在,请说明理由;
(3)若点P在原点,现在A,B,P三个点均向左匀速运动,其中点P的速度为每秒1个单位;A,B两点中有一个点速度与点P的速度一致,另一个点以每秒3单位的速度运动;则几秒后点P到A,B两点的距离相等?

(1)若点P到A,B两点的距离相等,写出点P对应的数;
(2)数轴上是否存在点P,使点P到A,B两点的距离之和为11,若存在,请求出x的值;若不存在,请说明理由;
(3)若点P在原点,现在A,B,P三个点均向左匀速运动,其中点P的速度为每秒1个单位;A,B两点中有一个点速度与点P的速度一致,另一个点以每秒3单位的速度运动;则几秒后点P到A,B两点的距离相等?
甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,两超市各自推出了不同的优惠方案.甲超市:在该超市累计购买商品超出300元之后,超出部分按原价的8折优惠;乙超市:在该超市累计购买商品超出200元之后,超出部分按原价的8.5折优惠.设顾客预计累计购物x(x>300)元.
(1)请用含x的式子分别表示顾客在两家超市购买该商品应付的费用;
(2)当x = 500时,选择哪家超市购买更优惠?请说明理由;
(3)当x等于多少时,选择哪家超市购买都一样?请说明理由.
(1)请用含x的式子分别表示顾客在两家超市购买该商品应付的费用;
(2)当x = 500时,选择哪家超市购买更优惠?请说明理由;
(3)当x等于多少时,选择哪家超市购买都一样?请说明理由.
甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为( )
A.100-x=2(68+x) | B.2(100-x)=68+x |
C.100+x=2(68-x) | D.2(100+x)=68+x |
在做解方程练习时,有一个方程“
” 题中∎处不清晰,李明问老师,老师只是说:“∎是一个有理数,该方程的解与当X=3时的整式
的值相同。”依据老师的提示,请你帮李明求出方程的解,并找到这个有理数。

