- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
学校有一批图书,分给各班阅读,如果每班分35本,则还剩17本;如果每班分40本,则还缺28本。设这个学校有
个班,则可列方程为(只列方程,不求解):_________________________

在创建全国文明城市,做文明市民活动中,某企业献爱心,把一批图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少学生?共有多少本图书?(列方程解答)
某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.
(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?
(2)问甲、乙两个班各有多少名学生?
(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?
购票张数 | 1~40张 | 41~80张 | 81张(含81张)以上 |
平均票价(元/张) | 100 | 90 | 80 |
(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?
(2)问甲、乙两个班各有多少名学生?
(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?
某次篮球联赛共有十支队伍参赛,部分积分表如下.根据表格提供的信息解答下列问题:
(1)列一元一次方程求出胜一场、负一场各积多少分?
(2)某队的胜场总积分能等于它的负场总积分吗?若能,试求胜场数和负场数;若不能,说出理由.
(3)试就某队的胜场数求出该队的负场总积分是它的胜场总积分的正整数倍的情况?
队名 | 比赛场次 | 胜场 | 负场 | 积分 |
A | 18 | 14 | 4 | 32 |
B | 18 | 11 | 7 | 29 |
C | 18 | 9 | 9 | 27 |
(1)列一元一次方程求出胜一场、负一场各积多少分?
(2)某队的胜场总积分能等于它的负场总积分吗?若能,试求胜场数和负场数;若不能,说出理由.
(3)试就某队的胜场数求出该队的负场总积分是它的胜场总积分的正整数倍的情况?
为了保护环境,防止水土流失,某学校组织同学参加绿化植树活动,松树、柏树共栽了1000棵,其中柏树是松树的2倍还多100棵,问松树和柏树各栽了多少棵?
如图1为某月的月历表,图2是
型的框图,且框图中五个小正方形与月历表中每个小正方形大小相同.观察并思考下列问题:

(1)用图2框图在月历表中任意圈出5个数(日期),这5个数的和的最小值是 ,最大值是 .
(2)在该月历表中可以得到 个这样的框图;
(3)如果型框图中5个数的和为80,则图二中字母a代表的数字是多少?并说明理由.


(1)用图2框图在月历表中任意圈出5个数(日期),这5个数的和的最小值是 ,最大值是 .
(2)在该月历表中可以得到 个这样的框图;
(3)如果型框图中5个数的和为80,则图二中字母a代表的数字是多少?并说明理由.