- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量的方差与标准差
- + 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列关于正态分布
的命题:
①正态曲线关于
轴对称;
②当
一定时,
越大,正态曲线越“矮胖”,
越小,正态曲线越“瘦高”;
③设随机变量
,则
的值等于2;
④当
一定时,正态曲线的位置由
确定,随着
的变化曲线沿
轴平移.
其中正确的是( )

①正态曲线关于

②当



③设随机变量


④当




其中正确的是( )
A.①② | B.③④ | C.②④ | D.①④ |
甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
(1)求ξ,η的分布列;
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了 做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、 患病情况等进行调查,并把调查结果转化为各户的贫困指标
和
,制成下图,其中“
”表示甲村贫困户,“
”表示乙村贫困户.若
,则认定该户为“绝对贫困户”,若
,则认定该户为“相对贫困户”,若
,则认定该户为“低收入户”;若
,则认定该户为“今年能脱贫户”,否则为“今年不 能脱贫户”.

(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率;
(2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用
表示所选3户中乙村的户数,求
的分布 列和数学期望
;
(3)试比较这100户中,甲、乙两村指标
的方差的大小(只需写出结论).









(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率;
(2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用



(3)试比较这100户中,甲、乙两村指标
