- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量的方差与标准差
- + 方差的性质
- 方差的期望表示
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.
(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;
(Ⅱ)在给出的10年数据中,随机抽取三年,记
为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求
的分布列和数学期望
;
(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为
,农村人均住房面积的方差为
,判断
与
的大小.(只需写出结论).
| 2007年 | 2008年 | 2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 |
城镇 | 18.66 | 20.25 | 22.79 | 25 | 27.1 | 28.3 | 31.6 | 32.9 | 34.6 | 36.6 |
农村 | 23.3 | 24.8 | 26.5 | 27.9 | 30.7 | 32.4 | 34.1 | 37.1 | 41.2 | 45.8 |
(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;
(Ⅱ)在给出的10年数据中,随机抽取三年,记



(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为




在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?
“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来,北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收入快速增长,人民生活品质不断提升.下图是北京市2012-2016年城乡居民人均可支配收入实际增速趋势图(例如2012年,北京城镇居民收入实际增速为
,农村居民收入实际增速为
).

(1)从2012-2016五年中任选一年,求城镇居民收入实际增速大于
的概率;
(2)从2012-2016五年中任选两年,求至少有一年农村和城镇居民收入实际增速均超过
的概率;
(3)由图判断,从哪年开始连续三年农村居民收入实际增速方差最大?(结论不要求证明)



(1)从2012-2016五年中任选一年,求城镇居民收入实际增速大于

(2)从2012-2016五年中任选两年,求至少有一年农村和城镇居民收入实际增速均超过

(3)由图判断,从哪年开始连续三年农村居民收入实际增速方差最大?(结论不要求证明)
在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标
和
,制成下图,其中“
”表示甲村贫困户,“
”表示乙村贫困户.若
,则认定该户为“绝对贫困户”,若
,则认定该户为“相对贫困户”,若
,则认定该户为“低收入户”;若
,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

(1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;
(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率;
(3)试比较这100户中,甲、乙两村指标
的方差的大小(只需写出结论).









(1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;
(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率;
(3)试比较这100户中,甲、乙两村指标

以下命题中,真命题有( )
①对两个变量
和
进行回归分析,由样本数据得到的回归方程
必过样本点的中心
;
②若数据
的方差为2,则
的方差为4;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
①对两个变量




②若数据


③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①② | B.①③ | C.②③ | D.①②③ |