- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的
,对教师管理水平给出好评的学生人数为总数的
,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的
列联表:
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量
.
①求对教师教学水平和教师管理水平全好评的人数
的分布列(概率用组合数算式表示);
②求
的数学期望和方差.
(
,其中
)


(1)填写教师教学水平和教师管理水平评价的

| 对教师管理水平好评 | 对教师管理水平不满意 | 合计 |
对教师教学水平好评 | | | |
对教师教学水平不满意 | | | |
合计 | | | |
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量

①求对教师教学水平和教师管理水平全好评的人数

②求

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(


甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是
,乙能答对其中的8道题,规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选.
(1)求甲恰有2个题目答对的概率;
(2)求乙答对的题目数X的分布列;
(3)试比较甲,乙两人平均答对的题目数的大小,并说明理由.

(1)求甲恰有2个题目答对的概率;
(2)求乙答对的题目数X的分布列;
(3)试比较甲,乙两人平均答对的题目数的大小,并说明理由.
(理科)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级.(精确到整数)
PM2.5日均值 (微克/立方米) | [25,35] | (35,45] | (45,55] | (55,65] | (65,75] | (75,85] |
频数 | 3 | 1 | 1 | 1 | 1 | 3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级.(精确到整数)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为
. 求该运动员在5次射击中.
(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为
,求
.(结果用分数表示)

(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为


学校游园活动有这样一个游戏项目:甲箱子里装有
个白球、
个黑球;乙箱子里装有
个白球、
个黑球.这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出
个球,若摸出的白球不少于
个,则获奖.(每次游戏结束后将球放回原箱)
(I)求在一次游戏中,
(i)摸出
个白球的概率;(ii)获奖的概率;
(II)求在两次游戏中获奖次数
的分布列及数学期望






(I)求在一次游戏中,
(i)摸出

(II)求在两次游戏中获奖次数


旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率
(2)求选择甲线路旅游团数的期望.
(1)求3个旅游团选择3条不同的线路的概率
(2)求选择甲线路旅游团数的期望.