- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 求离散型随机变量的均值
- + 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶3元,售价每瓶5元,每天未售出的饮料最后打4折当天全部处理完
根据往年销售经验,每天需求量与当天最高气温
单位:
有关
如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为100瓶
为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
Ⅰ
求六月份这种饮料一天的需求量
单位:瓶
的分布列,并求出期望EX;
Ⅱ
设六月份一天销售这种饮料的利润为
单位:元
,且六月份这种饮料一天的进货量为
单位:瓶
,请判断Y的数学期望是否在
时取得最大值?






最高气温 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.











在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?
某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别
从“创新性”和“实用性”两项进行评分,每项评分均按等级采用5分制,若设“创新性”得分为


![]() ![]() 作品数量 ![]() | 实用性 | |||||
1分 | 2分 | 3分 | 4分 | 5分 | ||
创 新 性 | 1分 | 1 | 3 | 1 | 0 | 1 |
2分 | 1 | 0 | 7 | 5 | 1 | |
3分 | 2 | 1 | 0 | 9 | 3 | |
4分 | 1 | ![]() | 6 | 0 | ![]() | |
5分 | 0 | 0 | 1 | 1 | 3 |
(1)求“创新性为4分且实用性为3分”的概率;
(2)若“实用性”得分的数学期望为



袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可
能性相同,现不放回地取3个球.
(1)求第三个取出红球的概率;
(2)求至少取到两个红球的概率;
(3)(理)用
与
分别表示取得的红球数与白球数,计算
、D
、
、D
能性相同,现不放回地取3个球.
(1)求第三个取出红球的概率;
(2)求至少取到两个红球的概率;
(3)(理)用






袋中有大小相同的4个红球与2个白球.
(1)若从袋中依次不放回取出一个球,求第三次取出白球的概率;
(2)若从袋中依次不放回取出一个球,求第一次取出红球的条件下第三次仍取出红球的概率.
(3)若从中有放回的依次取出一个球,记6次取球中取出红球的次数为
,求
与
.
(1)若从袋中依次不放回取出一个球,求第三次取出白球的概率;
(2)若从袋中依次不放回取出一个球,求第一次取出红球的条件下第三次仍取出红球的概率.
(3)若从中有放回的依次取出一个球,记6次取球中取出红球的次数为



当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的
列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为
,
,
,若
,则此二人适合结为学习上互帮互助的“师徒”,记
为两人中解决此题的人数,若
,问两人是否适合结为“师徒”?
参考公式及数据:
,其中
.

(1)根据茎叶图中的数据完成下面的

| 及格(![]() | 不及格 | 合计 |
很少使用手机 | | | |
经常使用手机 | | | |
合计 | | | |
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为






参考公式及数据:


![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |
高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力,某移动支付公司在我市随机抽取了100名移动支付用户进行调查,得到如下数据:
(1)如果认为每周使用移动支付超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过
的前提下,认为是否“喜欢使用移动支付”与性别有关?
(2)每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户,
①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;
②为了鼓励女性用户使用移动支付,对抽出的女“移动支付达人”每人奖励500元,记奖励总金额为
,求
的数学期望.
附表及公式:

每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用移动支付超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过

(2)每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户,
①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;
②为了鼓励女性用户使用移动支付,对抽出的女“移动支付达人”每人奖励500元,记奖励总金额为


附表及公式:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程
必经过点
;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程

③线性回归方程


④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A.0 |
B.1 |
C.2 |
D.3 |