刷题首页
题库
高中数学
题干
某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别
从“创新性”和“实用性”两项进行评分,每项评分均按等级采用5分制,若设“创新性”得分为
,“实用性”得分为
,统计结果如下表:
作品数量
实用性
1分
2分
3分
4分
5分
创
新
性
1分
1
3
1
0
1
2分
1
0
7
5
1
3分
2
1
0
9
3
4分
1
6
0
5分
0
0
1
1
3
(1)求“创新性为4分且实用性为3分”的概率;
(2)若“实用性”得分的数学期望为
,求
、
的值.
上一题
下一题
0.99难度 解答题 更新时间:2011-03-14 03:57:43
答案(点此获取答案解析)
同类题1
某市拟兴建九座高架桥,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在40岁以下(含40岁)的人有多少被抽取;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在40岁以上的概率.
同类题2
从某工厂抽取50名工人进行调查,发现他们一天加工零件的个数在50至350之间,现按生产的零件个数将他们分成六组,第一组50,100),第二组100,150),第三组150,200),第四组200,250),第五组250,300),第六组300,350,相应的样本频率分布直方图如图所示.
(1)求频率分布直方图中x的值;
(2)设位于第六组的工人为拔尖工,位于第五组的工人为熟练工,现用分层抽样的方法在这两类工人中抽取一个容量为6的样本,从样本中任意取两个,求至少有一个拔尖工的概率.
同类题3
某大学志愿者协会有
名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这
名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为
.
性别 专业
中文
英语
数学
体育
男
女
现从这
名同学中随机抽取
名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ)求
的值;
(Ⅱ)求选出的
名同学恰为专业互不相同的男生的概率;
(Ⅲ)设
为选出的
名同学中“女生或数学专业”的学生的人数,求随机变量
的分布列及其数学期望
.
同类题4
一个三位数的百位,十位,个位上的数字依次是
,
,
,当且仅当
且
时称为“凸数”.现从
,
,
,
中任取三个组成一个三位数,则它为“凸数”的概率是______.
同类题5
某公交公司为了方便市民出行、科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为研究车辆发车间隔时间
(分钟)与乘客等候人数
(人)之间的关系,经过调查得到如下数据:
间隔时间
(分钟)
等候人数
(人)
调查小组先从这
组数据中选取
组数据求线性回归方程,再用剩下的
组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值不超过
,则称所求线性回归方程是“恰当回归方程”.
(1)从这
组数据中随机选取
组数据后,求剩下的
组数据的间隔时间之差大于
的概率;
(2)若选取的是后面
组数据,求
关于
的线性回归方程
,并判断此方程是否是“恰当回归方程”;
(3)在(2)的条件下,为了使等候的乘客不超过
人,则间隔时间最多可以设置为多少分钟?(精确到整数)
参考公式:
,
.
相关知识点
计数原理与概率统计
概率
古典概型
利用随机变量分布列的性质解题
均值的性质