- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 求离散型随机变量的均值
- + 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,已知第一道审核、第二道审核、第三道审核通过的概率分别为
,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只进行两道程序就停止审核的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求X的分布列及数学期望.
设样本x1,x2,…,x10数据的平均值和方差分别为3和5,若yi=xi+a(a为非零实数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )
A.3,5 | B.3+a,5 | C.3+a,5+a | D.3,5+a |
某公司
位员工的月工资(单位:元)为
,其平均值和方差分别为
和
,若从下月起每位员工的月工资增加
元,则这
位员工下月工资的平均值和方差分别为( )






A.![]() | B.![]() |
C.![]() | D.![]() |
某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为
.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金
(元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求某员工选择方案甲进行抽奖所获奖金

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?