- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(题文)某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:


(1)补全频率分布直方图并求
、
、
的值;
(2)从
岁年龄段的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,记选取的
名领队中年龄在
岁的人数为
,求
的分布列和期望
.




(1)补全频率分布直方图并求



(2)从








已知X服从二项分布B(n,p),且E(3X+2)=9.2,D(3X+2)=12.96,则二项分布的参数n,p的值分别为_____,_____.
小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;
(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(
,
](n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。
(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;
(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(



①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。
(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数”;
(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数”;
(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).
某便利店记录了100天某商品的日需求量(单位:件),整理得下表:
试估计该商品日平均需求量为( )
日需求量n | 14 | 15 | 16 | 18 | 20 |
频率 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
试估计该商品日平均需求量为( )
A.16 | B.16.2 | C.16.6 | D.16.8 |
甲、乙两人进行“石头、剪子、布”游戏.开始时每人拥有3张卡片,每一次“出手”(双方同时):若分出胜负,则负者给对方一张卡片;若不分胜负,则不动卡片.规定:当一人拥有6张卡片或“出手”次数达到6次时游戏结束.设游戏结束时“出手”次数为
,则
_________.


一台机器在一天内发生故障的概率为p.已知这台机器在3个工作日至少一天不发生故障的概率为0.999.
(1)求p;
(2)若这台机器一周5个工作日不发生故障,可获利5万元;发生一次故障任可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元.这台机器一周内可能获利的均值是多少?
(1)求p;
(2)若这台机器一周5个工作日不发生故障,可获利5万元;发生一次故障任可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元.这台机器一周内可能获利的均值是多少?