- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- + 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某发电厂新引进4台发电机,已知每台发电机一个月中至多出现1次故障,且每台发电机是否出现故障时相互独立的,出现故障时需1名工人进行维修,每台发电机出现故障的概率为
.
(1)若一个月中出现故障的发电机台数为
,求
的分布列;
(2)该发电厂至少有多少名工人,才能保证每台发电机在任何时刻同时出现故障时,能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台发电机的能力,每台发电机不出现故障或出现故障能及时维修,就使该厂产生2万元的利润,否则将不产生利润,若该发电厂现有2名工人,要使求该发电厂每月获利的均值不少于6万元,则该发电厂每月需支付给每位工人的工资最多为多少万元?

(1)若一个月中出现故障的发电机台数为


(2)该发电厂至少有多少名工人,才能保证每台发电机在任何时刻同时出现故障时,能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台发电机的能力,每台发电机不出现故障或出现故障能及时维修,就使该厂产生2万元的利润,否则将不产生利润,若该发电厂现有2名工人,要使求该发电厂每月获利的均值不少于6万元,则该发电厂每月需支付给每位工人的工资最多为多少万元?
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2 min,则这名学生在上学路上因遇到红灯停留的总时间Y的期望为( )

A.![]() | B.1 | C.![]() | D.![]() |
某地区为调查新生婴儿健康状况,随机抽取6名8个月龄婴儿称量体重(单位:千克),称量结果分别为6,8,9,9,9.5,10.已知8个月龄婴儿体重超过7.2千克,不超过9.8千克为“标准体重”,否则为“不标准体重”.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部8个月龄婴儿中任取3名进行称重,则至少有2名婴儿为“标准体重”的概率是多少?
(2)从抽取的6名婴儿中,随机选取4名,设X表示抽到的“标准体重”人数,求X的分布列和数学期望.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部8个月龄婴儿中任取3名进行称重,则至少有2名婴儿为“标准体重”的概率是多少?
(2)从抽取的6名婴儿中,随机选取4名,设X表示抽到的“标准体重”人数,求X的分布列和数学期望.
如图,在小地图中,一机器人从点
出发,每秒向上或向右移动
格到达相应点,已知每次向上移动
格的概率是
,向右移动
格的概率是
,则该机器人
秒后到达点
的概率为__________.









已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有
的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率( )

A.![]() | B.![]() | C.![]() | D.![]() |
在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数
(单位:万元)与时间
(单位:年)的数据,列表如下:

(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到
).(若
,则线性相关程度很高,可用线性回归模型拟合);
附:相关系数公式

参考数据
.
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满
元可减
元;
方案二:每满
元可抽奖一次,每次中奖的概率都为
,中奖就可以获得
元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了
元的产品,该顾客选择参加两次抽奖,求该顾客获得
元现金奖励的概率.
②某位顾客购买了
元的产品,作为专营店老板,是希望该顾客直接选择返回
元现金,还是选择参加三次抽奖?说明理由.



(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合





附:相关系数公式


参考数据

(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满


方案二:每满



①某位顾客购买了


②某位顾客购买了


已知甲同学每投篮一次,投进的概率均为
.
(1)求甲同学投篮4次,恰有3次投进的概率;
(2)甲同学玩一个投篮游戏,其规则如下:最多投篮6次,连续2次不中则游戏终止.设甲同学在一次游戏中投篮的次数为
,求
的分布列.

(1)求甲同学投篮4次,恰有3次投进的概率;
(2)甲同学玩一个投篮游戏,其规则如下:最多投篮6次,连续2次不中则游戏终止.设甲同学在一次游戏中投篮的次数为


《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为
、
、
、
、
、
、
、
共8个等级.参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.选考科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到
、
、
、
、
、
、
、
八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(1)求物理原始成绩在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记
表示这3人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)



























(1)求物理原始成绩在区间

(2)按高考改革方案,若从全省考生中随机抽取3人,记



(附:若随机变量




某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,
学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为
分,
学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为
分,则
的值为( )





A.![]() | B.![]() | C.![]() | D.![]() |