- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
(Ⅰ)若从分数在
,
的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为
,求随机变量
的分布列和数学期望.
分数段 | 频数 | 选择题得分24分以上(含24分) |
![]() | 5 | 2 |
![]() | 10 | 4 |
![]() | 15 | 12 |
![]() | 10 | 6 |
![]() | 5 | 4 |
![]() | 5 | 5 |
(Ⅰ)若从分数在


(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为


2015年6月20日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=( )
A.
B.
C.
D.
A.




某竞猜活动有54人参加.设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品.假定每位参与者答对每道填空题的概率为
,答对每道选择题的概率为
,且每位参与者答题互不影响.设参与者中可获得纪念品的人数为
,则均值(数学期望)
( )




A.![]() | B.![]() | C.![]() | D.![]() |
西北某地根据历年的气象资料显示,春季中一天发生沙尘暴的概率为
,连续两天发生沙尘暴的概率为
,已知某天发生了沙尘暴,则随后一天发生沙尘暴的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示频率分布直方图.
(Ⅰ)估计从该市高一学生中随机抽取一人,体重超过
的概率;
(Ⅱ)假设该市高一学生的体重
服从正态分布
.
(ⅰ)利用(Ⅰ)的结论估计该高一某个学生体重介于
之间的概率;
(ⅱ)从该市高一学生中随机抽取3人,记体重介于
之间的人数为
,利用(ⅰ)的结论,求
的分布列及
.

(Ⅰ)估计从该市高一学生中随机抽取一人,体重超过

(Ⅱ)假设该市高一学生的体重


(ⅰ)利用(Ⅰ)的结论估计该高一某个学生体重介于

(ⅱ)从该市高一学生中随机抽取3人,记体重介于




某早餐店每天制作甲、乙两种口味的糕点共n(nÎN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?
甲口味糕点日销量 | 48 | 49 | 50 | 51 |
天数 | 20 | 40 | 20 | 20 |
乙口味糕点日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 30 | 20 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?