- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
本着健康、低碳的生活理念,租用公共自行车骑行的人越来越多.某种公共自行车的租用收费标准为:每次租车不超过1小时免费,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).甲、乙两人相互独立来租车,每人各租1辆且租用1次.设甲、乙不超过1小时还车的概率分别为
和
;1小时以上且不超过2小时还车的概率分别为
和
;两人租车时间都不会超过3小时.
(1) 求甲、乙两人所付租车费用相同的概率;
(2) 记甲、乙两人所付的租车费用之和为随机变量
,求
的分布列和数学期望
.




(1) 求甲、乙两人所付租车费用相同的概率;
(2) 记甲、乙两人所付的租车费用之和为随机变量



某学生参加4门学科的学业水平测试,每门得
等级的概率都是
,该学生各学科等级成绩彼此独立.规定:有一门学科获
等级加1分,有两门学科获
等级加2分,有三门学科获
等级加3分,四门学科全获
等级则加5分,记
表示该生的加分数,
表示该生获
等级的学科门数与未获
等级学科门数的差的绝对值.
(1)求
的数学期望;
(2)求
的分布列.










(1)求

(2)求

现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为
,求
的概率分布及数学期望.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为


已知正四棱锥
的侧棱和底面边长相等,在这个正四棱锥的
条棱中任取两条,按下列方式定义随机变量
的值:
若这两条棱所在的直线相交,则
的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则
;
若这两条棱所在的直线异面,则
的值是这两条棱所在直线所成角的大小(弧度制).
(1)求
的值;
(2)求随机变量
的分布列及数学期望
.



若这两条棱所在的直线相交,则

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则

(1)求

(2)求随机变量


本次高三数学考试有1万人次参加,成绩
服从正态分布,平均成绩为118分,标准差为10分,则分数在
内的人数约为( )
(参考数据:
,
,
)


(参考数据:



A.6667人 | B.6827人 | C.9545人 | D.9973人 |
设
为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,
;当两条棱平行时,
的值为两条棱之间的距离;当两条棱异面时,
.
(1)求概率
;
(2)求
的分布列,并求其数学期望
.




(1)求概率

(2)求


设整数m是从不等式x2-2x-8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望E(ξ)=________.
一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,
倍的奖励(
),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为
元.
(1)求概率
的值;
(2)为使收益
的数学期望不小于0元,求
的最小值.
(注:概率学源于赌博,请自觉远离不正当的游戏!)



(1)求概率

(2)为使收益


(注:概率学源于赌博,请自觉远离不正当的游戏!)