- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得
分,取出一个白球得
分,取出一个黑球得
分,其中
,
,
都为正整数.
(1)当
,
,
时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量
为取出此2球所得分数之和,求
的分布列;
(2)当
时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量
为取出此球所得分数,若
,
,求
和
.






(1)当





(2)当






某届奥运会上,中国队以26金18银26铜的成绩列金牌榜第三、奖牌榜第二.某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了60人,具体的调查结果如下表:
(1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为
,求随机变量
的分布列及数学期望.
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 6 | 10 | 13 | 11 | 9 | 11 |
满意人数 | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为


元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X的期望值
( )

A.25 | B.24 | C.22 | D.20 |
据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪
元,每单抽成
元;乙公司规定底薪
元,每日前
单无抽成,超过
单的部分每单抽成
元.
(1)分别求甲、乙快递公司的快递员的日工资
(单位:元)与送货单数
的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为
(单位:元),求
的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪






(1)分别求甲、乙快递公司的快递员的日工资


(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为


②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
甲市有
万名高三学生参加了天一大联考,根据学生数学成绩(满分:
分)的大数据分析可知,本次数学成绩
服从正态分布,即
,且
,
.
(1)求
的值.
(2)现从甲市参加此次联考的高三学生中,随机抽取
名学生进行问卷调查,其中数学成绩高于
分的人数为
,求
.
(3)与甲市相邻的乙市也有
万名高三学生参加了此次联考,且其数学成绩
服从正态分布
.某高校规定此次联考数学成绩高于
分的学生可参加自主招生考试,则甲和乙哪个城市能够参加自主招生考试的学生更多?
附:若随机变量
,则
,
,
.






(1)求

(2)现从甲市参加此次联考的高三学生中,随机抽取




(3)与甲市相邻的乙市也有




附:若随机变量




“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较髙,他独自一人解决项目M的概率为
;同时,有n个水平相同的人也在相互独立地研究项目M,他们各自独立地解决项目M的概率都是0.5,这个人的团队解决项目M的概率为
,若
,则n的最小值是______________.



某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为
,且甲、乙两人是否答对每个试题互不影响.
(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为
,求
的分布列及数学期望和方差.

(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为

